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Abstract 

We analyze in detail the nonperturbative solutions of both the usual and the bi- 
generic. k-multicritical hermitian matrix models. We show that the methods of 
Boutroux CM be generalized to provide “tripiy truncated” solutions of the string 
equations which are unique up to symmetries of the equations. For k even, the 
solutions to the string equations thus obtained are always complex. For k odd, 
the usual multicritical one-matrix models always have real solutions. The bigeneric 
models for k odd have real specific heat, but certain correlators may be complex. 
We also make explicit the relation between these results and an eigenvalue analysis 
on the sphere. 

3 Operated by Unlvsrritles Research Association Inc. under contract with lhe United States Department of Energy 



1. Introduction 

Since the initial excitement over the nonperturbative solutions of hermitian matrix 

models[l]-[4], certain perverse features of these solutions have come to light. The 

simplest one-matrix model, whose string equation coincides with Painlevd I, was 

supposed to describe pure 2-D gravity. However David[5]-[7]hss shown that the 

model has no consistent real solutions. It is possible to obtain a consistent real 

solution for pure gravity by dimensional reduction[B]-[lo], but this requires that we 

abandon the analytic elegance of the KdV hierarchy. 

It would thus seem incumbent upon us to grapple further with the k- 

multicritical string equations, in an attempt to better understand the nature of 

their solutions. Many authors have already made progress in this direction. BrCzin, 

Marina+ and Parisi(BMP)[ll] showed that the k=3 model does have a consistent, 

possibly unique, real solution, which they found numerically. Futhermore, numeri- 

cal investigation showed that the renormalization group flow from the k=3 to the 

k=2 model is singular[lZ]. Several considerations have since led to the speculation 

that ell of the k even models will share the unfortunate property of k=2, while all of 

the k odd models should possess analogs of the BMP solution. One consideration is 

that the simplest matrix potentials giving k even criticality are unbounded below. 

This leads to instanton-like barrier penetration effects[6][13][14]. For k=2 David 

has shown[6] that such single instanton contributions seem to match up with the 

nonperturbative terms in the asymptotic solution of Painled I. Since these terms 

occur with complex coefficients, it is tempting to identify these instanton-like effects 

as the source of the problem, which should then, by extension, occur for all even k. 

A related consideration is that the even k models exhibit an instability to variations 

of the steepest descent eigenvalue configuration on the sphere[6][14]. This can be 

avoided by complex analytic continuation, but this in turn diminishes the prospects 

for real solutions. A third consideration is that, while all of the odd k one-matrix 

models exhibit Bore1 summability[l3], the even k models do not. 

In this paper we demonstrate, by explicit analytic methods, that sll of the odd 

k one-matrix models have unique’ consistent real solutions, and that none of the 

even k models have consistent real solutions. We give an analytic expression for the 

BMP solution (though not, of course, in closed form), and show that, while real, it is 

of the same form as the complex “triply truncated” solution of P&de& I. Further, 

we show how to obtain a unique triply truncated solution for any one-matrix model, 

’ We will define Ymique” more precisely in the sequel. 
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and how the presence or absence of certain symmetries in the development determine 

whether this solution is real or complex. 

Our analysis applies to models with asymmetric matrix potentials as well as 

the simpler even potential models. This allows us to include the bigeneric models 

introduced by us in [15]. These models, despite their bizarre appearance in pertur- 

bation theory, fit in very naturally with the string equation analysis outlined above. 

This indicates that the bigeneric models may not be mere mathematical accidents, 

but may rather correspond to unusual continuum theories yet to be identified. 

We also provide the detailed correspondence between the string equation anal- 

ysis and an eigenvalue analysis on the sphere. This extends the eigenvalue analysis 

of David[G] to arbitrary asymmetric potentials, and extends the results of Dailey, 

Johnson, and Morris[lS]. As is now well known, asymmetric potentials lead to a 

doubling of the string equations[l6]-[18], [15]. A s s h own in [19], the critical behavior 

at the two endpoints of the eigenvalue density determines, respectively, the form of 

the string equations for the two universal scaling functions. We show further, that 

the range of erg(z) (z is the scaling variable) for which a consistent double-scaling 

limit exists at each endpoint matches precisely to the pole-free regions of the triply 

truncated solutions to the two string equations. This is nontrivial in our examples 

since these regions differ between the two solutions. 

2. The Analysis of Boutroux 

Many years ago the mathematician Pierre Boutroux developed a number of power- 

ful techniques for analyzing the analytic properties of the solutions to the P&led I 

equation[ZO]. In this section we review Boutroux’s methods and results preparatory 

to extending them to the string equations of general hermitian matrix models. A 

brief discussion of Boutroux’s work can already be found in the papers of David [5]- 

[7], following the book by Hille[Zl]. 

The PeinlevC I equation (with appropriate resealings) can be written as 

The equation is invariant under the transformation 

2x; 
z+w2, P --) w=p, w = ezp- 

5 

It is thus convenient to make the change of variables 

= = Ql’l, 
5 

W(%) = z-l12p 

(2.1) 

(2.3) 
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The equation then becomes 

w”-6wz+8=--wI+;$ 
I 

This is asymptotic to the elliptic equation 

(2.4) 

zu;--6w,z+6=0 (2.5) 

whose general solution is given by the Weierstrass elliptic function P(z - ZO; 12, c), 

where 10 and e are arbitrary. This function is doubly periodic and, in general, has 

an infinite double array of second order poles in the complex z-plane. We thus 

expect that solutions of Painlev6 I will, in general, inherit a similar network of 

double poles, at least asymptotically. 

On the other hand, Boutroux shows that (2.4) has an infinite number of so- 

called truncated solutions which have no poles at all over half of the complex t-plane. 

To see this, introduce an artificial expansion parameter X 

and develop the solution as a power series in A: 

W(Z) = 1+ Awl(z) + X%*(t) +. . . (2.7) 

where we have employed the fact that w(z)=1 is the trivial pole-free solution of the 

elliptic equation (2.5). 

The functions wj(Z) all obey second order linear equations of the same form: 

where: 

&!-12w.=h. 
I I I (2.8) 

hj(*) = + + &A 
j-l 

+6X W&Jj-i (2.9) 
i=l 

(note the last term above was inadvertently dropped(!) by Boutroux). In any 

domain where hi(Z) is analytic, the general solution of (2.8) is given by 

,“j(Z) = ; [efix j’ d&-Ji?=‘j+‘) + ,-Jilil /’ &@=‘,+‘)] 11 23 
(2.10) 

where ~1 and zz are arbitrary and h;(z) is the primitive of h&). 
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In particular, for j=l we have 

and 

h,=$$ (2.11) 

w(z) = -$ [e “=&(fi=) +e-mzE1(-&~)] + die-d’ +daefiZ (2.12) 
where dl and da are arbitrary constants, and El(z) is the exponential integral 

function[22][23]. Now El(z) can be rewritten as a logarithm plus an entire function: 

El(z) = Ein(z) - log(z) - y (2.13) 

where y is Euler’s constant and the entire function Ein(z) is known as the comple- 

mentary exponential integral function. In addition, El(.z) has the following asymp- 

totic expansion: 

El(Z) -+ 5 [1- 3 +. . .] (b94 < $1 
Thus WI(Z) is an analytic function away from the log branch point, and it has 

smooth asymptotic behavior given by 

w(z) --+ & + die-“= + d2eJi?= (2.15) 

If we chose da=0 (d, still arbitrary) then 2oy(z) is analytic, bounded and tends to 

zero like l/z’ in the entire right half plane. 

We can now obtain Boutroux’s truncated solutions by iterating the above anal- 

ysis for all of the Wj’s, adjusting the integration constants to obtain the following 

behaviors. At each iteration, hi(z) is a polynomial function of the wi’s (;<j), their 

derivatives, and l/z. Each hj(z) is analytic, bounded, and tends to zero like l/z”j 

in the right half plane. In fact the only singularities of the hj’s correspond to those 

of the log and powers of logs. It follows that each wj(z) is analytic, bounded, and 

tends to zero like l/z’j in the right half plane; also the only singularities of the wj’s 

correspond to those of the log and powers of logs. Boutroux shows, in addition, that 

for sufficiently large Re(.z) greater than some z.>O, the bound on Iwj(z)l decreases 

with each iteration like l/lzavtl, where e is arbitrarily smal12. We can thus arrange 

a a Since Boutroux dropped O(j) number of terms on the r.h.s. of (2.9), one might Since Boutroux dropped O(j) number of terms on the r.h.s. of (2.9), one might 
worry that this spoils his bounds on the wj. However this O(j) enhancement is offset worry that this spoils his bounds on the wj. However this O(j) enhancement is offset 
by a 1/(2j - 1) suppression in the asymptotic series for h;. by a 1/(2j - 1) suppression in the asymptotic series for h;. 
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that the series (2.7) converges for X=1, and we obtain solutions of (2.4) which are 

pole-free in the half plane Re(t)>z,. There is a one-parameter infinity of such 

solutions, which Boutroux calls solutions truncated in the direction of the positive 

real axis. Obviously one can also construct an infinite family of solutions which are 

truncated in the direction of the negative real axis. Each truncated solution has an 

infinite array of double poles, but the array terminates for some Re(z)<z,. 

There is a unique triply truncated solution of (2.4) which is pole-free asymptot- 

ically in the entire (cut) z-plane 3. It is obtained by setting both constants dr and 

da equal to zero in the expression (2.12) f or W,(Z), and making analogous tunings 

for the other Wj’s, such that all the wj’s tend to zero like l/z’j in the entire (cut) 

z-plane. In terms of the original scaling variable z, the triply truncated solution 

is asymptotically pole-free for all ]atgz]<4x/5. By employing the transformation 

(2.2), we can in fact obtain ten distinct triply truncated solutions of Painlevl I, 

five of which have the asymptotic behavior p(z)++, and five of which go like 

p(t)+-&. Each such solution has poles asymptotically only in a wedge of inte- 

rior angle 2x/5. 

By choosing the wedge 2rr/5<argz<4~/5, we have a solution of Painleve I with 

(at most) a finite number of poles on the real axis. Unfortunately, this solution is 

complex for real z [5]. This can be seen at the level of tar(r) as given by (2.12) 

with dr and dz set to zero. From (2.13) it is clear that for real positive z, which 

implies real positive z, Wr(t) acquires an imaginary part from a term proportional 

to rog(--2). The situation is even worse for real negative I, since I itself is 

complex. David[6] has interpreted this as an instanton-like instability in what 

would otherwise seem the unique consistent solution of the k=2 pure gravity matrix 

model. 

3. The Bigeneric k=2 String Equations 

As discussed in [15], hermitian matrix models with one-cut eigenvalue distribu- 

tions but asymmetric potentials can exhibit k=2 double-scaling behavior which is 

quite different i?om the pure gravity model. For the bigeneric k=2 model the con- 

tributions to the specific heat from even genera vanish. One might imagine that 

such bizarre solutions are somehow sick, and that this can be seen from a careful 

analysis of the k=2 bigeneric string equations and eigenvalue density. However, this 

’ Note that, throughout this paper, “triply truncated” merely denotes solutions 
with this property. 

5 



is not the case; the bigeneric solution is in fact slightly better behaved than its pure 

gravity sibling. 

Let us examine the k=2 bigeneric string equations. These consist quite simply 

of a pair of Painlevd I ‘6: 
1 

-gp$+p*== (3.1) 

where the specific heat p(z)=p++p- and we have suppressed irrelevant resealings. 

In addition, the matrix model analysis that produces these equations gives a pre- 

scription for the asymptotics of the solutions: 

p+(z) -+ +A P-(Z) + -& (3.2) 

Thus the p+ equation is identical to the pure gravity equation for p. To avoid an 

intlnite number of double poles on the real z axis, we can take the appropriate triply 

truncated solution for p+, as discussed in the previous section. This solution is of 

course complex. 

The p- equation requires a different kind of solution, due to its differing 

asymptotics. As discussed above, triply truncated solutions of PainlevC I with 

p-(z)-+-& asymptotics can be obtained by applying the transformation (2.2) to 

the original triply truncated solution for W(Z). One can easily show that (2.2) is 

equivalent to the following transformation on w(z): 

% + iz; w-P--w (3.3) 

This is an obvious invariance of (2.4). Thus if we denote by Wt+(Z) the triply 

truncated solution, -w++.(ir) is also a triply truncated solution, with the expansion 

-1 - Wr(i.2) - Wr(i%) - . . . (3.4) 

This gives a solution for p-(z) which is asymptotically pole-free for real I and 

satisfies (3.2). Furthermore this solution is real for real z! To see this, observe from 

(2.8) and (2.9) that all the Wj(r)‘s have (for the triply truncated case) a z-t--t 

symmetry. Since 

(rog(m%))’ = log(-idis%) (3.5) 

for real z, and since all the Wj(ir)‘s can be written as sums of powers of these logs 

times entire functions, this Z-+-E symmetry guarantees that -Wtrip(iz) is real for 

real z. Thus p-(r) is real for real positive z. Of course p=p++ p- is still complex. 
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We see then that, although the k=2 bigeneric model inherits the same 

instanton-like difficulty as the pure gravity model, the new features of the string 

equation analysis are quite reasonably behaved. 

4. The Solutions of the k=3 String Equation 

In this section we will show how to extend the techniques of Boutroux to an analysis 

of the k=3 string equation. In particular, we will demonstrate that this equation has 

a unique triply truncated solution which is quite similar to that of pure gravity. In 

this case, however, we will obtain a solution which is real for real z, and corresponds 

in fact to the real pole-free solution found numerically by Brezin, Marina& and 

Parisi [ll]. 

The k=3 string equation can be written 

J-p(‘) + ;(p’)’ + pp” + p3 = t 

The equation is invariant under the transformation 

2ni 
z-+w2, P + WSP, w = erp- 

7 

It is thus convenient to make the change of variables 

6 ,s 2=-r/, 
7 

W(%) = 2-‘lJp 

The equation then becomes 

1 w”’ 41 w” 41 w’ =--- --___ 
5 % + 490 9 490 23 

+ 
128 UJ tuw’ 6 2ua 

---7+3-p 
240114 

This is asymptotic to the equation 

7J4) + 5(w’)a + 1Oww” + low3 - 10 = 0 

which turns out to be equivalent to the elliptic equation 

(wb)’ = -2w; + cul; - cawo - $3 - 10 

7 

(4.1) 

(4.2) 

(4.3) 

(4.4) 

(4.5) 

(4.6) 



where c is an arbitrary constant. The solutions arc Weierstrass elliptic functions 

plus a constant, and depend on c plus one additional arbitrary parameter.Thus, 

just as for Painleve I, we expect solutions of (4.1) to have an infinite double array 

of second order poles in the complex z-plane. 

Now let us introduce an artificial expansion parameter X on the right hand side 

of (4.4), just as we did in (2.6). We want to develop the solutions for W(Z) as a 

power series in A: 

W(%) = 1 + Awl(%) + X’Wa(Z) + . . . (4.7) 

where we have used the fact that w(z)=1 is a trivial pole-free solution of the elliptic 

equation (4.5). 

The key observation is that each wj(r) is given by a pair of second order linear 

equations of similar form: 

WY = CZWj + gj(%) (4.8~~) 

9; = a’gj + lOhi (4.8b) 

where 

a=-5+i&= &513~(~-~); qb=tan-' (l/d) (4.0) 

and a* denotes the complex conjugate of a. The functions hi(Z) are polynomial 

functions of the wi’s (i<j), their derivatives, and l/z. In particular, for j=l we 

have 

+!--+I!!?1 
2401 z4 

(4.10) 

The general solution for WI(Z) is found to be: 

w(t) =-7 [e 4’E~(fiz) + e-fi”El(-&)I 

-7’ [e @‘E1(fiz) + ewJ;;““El(-fiz)] 

+ dl efi* + dae-4” (4.11) 

where 

y=5 
a* --a ( 

A+$& 
49 > 

(4.12) 

and where dl and da are arbitrary constants. We have already iixed two other 

arbitrary constants in the general solution by selecting the unique solution of (4.8b) 

such that gr(t) tends asymptotically to sero like l/z1 in the entire cut z-plane. 
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The solution (4.11) is very similar to (2.12) obtained for Painleve I. To obtain 

the triply truncated solution for W(Z), we can employ the same arguments used by 

Boutroux. The first step is to set dr and da equal to zero, so that WI(Z) tends 

asymptotically to zero like l/za in the entire cut z-plane. We observe that WI(Z) 

can be rewritten as logs and entire functions. Thus ha(r) can be written as logs, 

squares of logs, and entire functions; furthermore hz(z) tends asymptotically to zero 

like l/z* in the entire cut z-plane. By Boutroux’s arguments, this is sufficient to 

guarantee that, with suitable choices of the integration constants, ga(z) and wr(r) 

can also be expressed in terms of powers of logs and entire functions, and that they 

tend asymptotically to zero like l/z’ in the entire cut z-plane. The rest of the 

derivation proceeds just as for PainlevC I. 

The unique triply truncated solution of (4.4) is real for real z. This follows from 

three facts. The first is that all of the wj(r)‘s can be written as finite polynomials 

of logs times entire functions. The second is that the resolution of (4.4) into the 

pair of second order equations (4.8 )has an a-a* symmetry (note also that all the 

other coefficients in (4.8 )are real). The third is that the choices of integration 

constants required for the triply truncated solution preserves this symmetry. Thus 

all the wj(r)‘s are real for real t. In addition, using the above arguments plus the 

symmetry of (4.4) under z-+--z, it follows that the triply truncated solution of (4.4) 

is also real when .r is pure imaginary. 

It is now a straightforward matter to match up the real, triply truncated solu- 

tion of (4.4) to the results of BMP[ll], and David [6] . Although there is considerable 

branch choice ambiguity in the solution, we can fix this by enforcing the a+a* and 

z-+-z symmetries. The branch cuts of the solution correspond to the branch cut of 

log(@) and the complex conjugate branch cut of log(e,z). They are located at 

arg(z)=w/2+4/2 and -s/2-4/2 respectively. Thus the boundaries of the asymp- 

totically pole-free regions in the complex r-plane occur at urg(+)=f3(a+$)/i’. 

Because of the a+a* symmetry, this solution is real for real positive z, and thus 

provides a solution for p(z) which is real for real positive E and has asymptotics 

p(z)+lzl’l’ as z++co. This matches precisely to the BMP solution and the eigen- 

value analysis of David [6] for real positive z. 

To obtain a real solution for real negative 2, we must apply the transformation 

(4.2). In terms of w and z, this transformation becomes: 

W(%) + w’w(w-I*), w = ezp? 
3 

(4.13) 

Consider the result of applying this transformation twice. The branch cut at 
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erg r=3(s+d)/7 is rotated by 4x1’7 to r+(3qS/7). By our symmetry assumption, 

the conjugate branch cut is at -s-(34/7). F or real negative z, the argument of z 

is 7~/6. Using this information, the transformed solution can be written 

p(z) = z’/3e*w(e-~z) 

= -I+I’f3w (ilzl) (4.14) 

This is real, has the same z-+--o0 asymptotic as the BMP solution, and has branch 

cuts which match to David’s eigenvalue analysis. 

6. The Bigeneric k=3 String Equations 

As shown in [15], the bigeneric k=3 string equations are given by 

1 (4) 1 ZPi + #P;12 + PiPT + P: = ++ 

where cl is an arbitrary nonzero constant. The eigenvalue analysis of this model, 

which we present in the next section, shows that a consistent one-cut eigenvalue 

density requires that cl be complex. This is a harmless requirement as long we can 

still succeed in finding real solutions for the specific heat. For simplicity we take 
. . 

cr posrtrve imaginary. After suitable resealings, and a change of variables Z-G, 

pi-+-pi, where e=iZ, the string equations may then be written 

kpp + ;(P;y + p*p’; + P:(q = FS 

Thus for p- we are simply interested in the solutions of the k=3 equation (4.1) 

evaluated along the imaginary axis. For p+, we note the following. If one replaces 

the term -1 in (4.4) by a term -c, then (4.4) is invariant under the following 

transformation: 

.a +iz, w-t-w, E-+--C (5.3) 

Thus -w(k) corresponds to solutions for p+. 

It is not too difficult to obtain bigeneric solutions which are asymptotically 

pole-free on the real z-axis. Consider first p-(z) for real positive z. This corre- 

sponds to Z on the negative imaginary axis, and thus arg(.z)=-7n/12. To obtain 

something close to a real solution for p-, we use the triply truncated solution of 

(4.4) and apply the inaerae of transformation (4.13) one time: 

p-(z) = (-iz)1~3e+w(e+z) 

= ilzl’/3w(e-+ IzI) 

10 
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The rotated “branch cuts” of this solution (which are actually the boundaries of the 

pole-free region) are located at erg 2=&(x+34)/7. We will show in the next section 

that this matches up nicely with our eigenvalue analysis. On the other hand, this 

solution is clearly not real. 

To obtain p+(z), we simply replace W(Z) by -~(;.a) in the above solution. Thus 

p+(z) = -i]r]‘13w(e*]z]) (5.5) 

The boundaries of the pole-Gee region for p+ will be rotated by 3x/7 in erg(z) 

relative to those of p-. 

Now note that, by the arguments of the previous section, w(z)+w(z*) is real 

for the triply truncated solution. It follows that, for the bigeneric solution just 

described, the specific heat p(z)=p++p- is real! This is the unique real solution in 

the same sense that BMP is the unique real solution of (4.1). For negative real z, 

we simply interchange the solutions for p+ and p-, and again obtain a real (in fact, 

the same) solution for p(z). 
The sentient reader will also have noted that, for our bigeneric solution, the 

other universal function o(z)=p+-p- is pure imaginary. This sounds rather un- 

physical, since it may cause certain correlators to be complex, but we should point 

out that the physical interpretation of o(z) in matrix models has yet to be eluci- 

dated. 

0. Eigenvalue Analysis 

In this section we sketch the eigenvalue analysis of the bigeneric k=3 model and 

of bigeneric models in general, showing consistency with the results of the previous 

sections. Since our techniques are lifted wholesale from David [6] (see also [24]), we 

suppress those details which are not germane to our discussion. 

In the naive large N limit (i.e. the spherical limit) a hermitian matrix model 

with polynomial potential V(+) is dominated by the steepest descent configuration 

for the eigenvalues A(r)=X(i/N)=flX,, h’ h ’ d w IC IS es&bed (in general) by a nor- 

malized density measure dp(A) which has support on some contour C in the complex 

X-plane. Following [24] and (61, the spherical solution is conveniently analyzed in 

terms of two functions: 

FOc) = / 444& (‘3.1) 

and the primitive 

G(X) = 1” dcc (WL) - 2%)) 

11 
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In this paper we consider only one-arc solutions, for which the support C consists 

of a single connected component (multi-arc solutions are discussed extensively in 

[25][26]). Thus C has two endpoints, at a=A(O) and 6=X(l). The function G(X) has 

branch points at a and b, and is pure imaginary along C : 

G[A(z)] = zk2iwz (6.3) 

Thus, along C , G’(A) is proportional to the eigenvalue density u(X)=dz/dA: 

G’(A) = f2inu(A) (6.4) 

Furthermore G(X) can be interpreted as the action of a single eigenvalue. Thus the 

steepest descent solution is stable only if the real part of G(X) is positive along the 

entire integration contour for A in the original path integral [6]. 

Let us now consider an eigenvalue analysis of the k bigeneric models introduced 

in [15]. In [15] the k bigeneric solution on the sphere was expressed as 2k+l partial 

derivative constraints on the functional R(R, S), where R(z), S(z) are the recursion 

coefficient functions: 

hlO,l=l, ftO,Z=“‘fi,,,k=o, &,,,=“-i&+,=0, f&&+,=0 (6.5) 

These constraints split nicely into two sets which involve only the coupling constants 

which multiply even (odd) powers of X in V(X). M ore precisely, the constraints on 

the sphere split into k+l even (odd) and k odd (even) constraints according as k is 

odd (even). Each set separately satisfies the constraints for k + 1 and k criticality, 

respectively. We should, of course, see the same constraint structure from the 

eigenvalue analysis of these models. 

Before writing the explicit form of the eigenvalue density, we note the following 

formal relation between R(R, S) on the sphere and the eigenvalue density: 

u(X) = 1 JR= 
T R, 44&% (f3.6) 

where RI is determined implicitly by 4Rl=(X - S(R1))l. In [15] we scaled R, to 

one, and shifted S, to zero. This has the effect that the endpoints a, b of the support 

C are located at A=f2. Note, however, that while the endpoints are symmetrical, 

the eigenvalue distribution is nof symmetrical for asymmetric potentials. 

Given the discussion above the reader will not be surprised to learn that the 

eigenvalue density for a one-cut solution of the k bigeneric models has the following 
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form: 

U(A) = [pe..,(~) + SPodd(A)] (2 - A)“-‘(2 + A)“-’ (‘3.7) 

where g is an arbitrary but nonzero coupling. P.,,., and P0dd are even (odd) poly- 

nomials in X with the property that P,,,, (P&d) has an eztra zero at both endpoints 

A=&2 when k is odd (even). 

Two important facts follow from the form of (6.7). The first is that the branch 

point behavior of (6.7) implies that the double-scaling continuum limit will be de- 

termined by a pair of order 2k-2 KdV type string equations. This of course agrees 

with the explicit results of [15]. 

The second fact appears when we check the sign of the leading order corrections 

to u(X), as given by (6.7), when we move away from either endpoint along the 

support c . Suppose k is odd. Then P,,,, has an extra zero at both endpoints. 

Letting X=&(2-c) in (6.7), we find that the leading order in c behavior has the 

form 

u(&(2 - e)) - hge(‘-‘12) + 0 (c(k+l/z)) (6.8) 

Thus, if we assume that C lies along the real axis, then the eigenvalue density given 

by (6.7) has opposite sign near the two endpoints. This problem does not occur 

for k even, since in this case the contribution from P,,,, dominates the behavior 

near the endpoints. We conclude that a consistent one-cut solution for the k odd 

bigeneric models requires complez support C . 

This is not too alarming in light of the fact that bigeneric matrix potentials 

are, typically, not bounded below, and thus the path-integral is ill-defined anyway 

unless we continue to complex X (or impose some other regular&&ion [9][10][27][28]). 

However the above result also implies that for k odd we must approach the double- 

scaling limit along complex trajectories in complex coupling constant space (the 

critical couplings are still real). It thus becomes doubtful as to whether the string 

equations have real solutions. 

The situation for odd k bigeneric models is quite similar to that of the standard 

even k multicritical models. For these models, the potential is also unbounded 

below. Furthermore, if the support C is assumed real, one finds that Re(G) turns 

negative as soon as one moves off one of the endpoints of C [5][6][14]. We must 

emphasize that, as in our case, this does not imply that there are no stable one- 

arc solutions, but it does raise the spectre that no such solutions are reaP. Since 

’ The lack of a real solution may itself indicate an instanton-like instability, but 
this connection is not entirely clear. 
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David has shown this to be the case explicitly for pure gravity, many people have 

conjectured that this holds for alI even k. We will prove this conjecture in the next 

section. 

Let us give two examples of eigenvalue densities of the form (6.7). For the k=2 

bigeneric model, we obtain 

4X) = & [20 + 3gA(X2 - 4)] (2 - x)3/*(2 + A)+ 

where g is the arbitrary coupling appearing in the potentiaI[l5]: 

V(X) = gx + Xa - igA’ - $4 + $gx5 - &jd’ 

(note we have fixed the redundant couplings c~,cz of [15]: cl=ca=2). 

For the k=3 bigeneric model we obtain 

44 = & [48(Xa - 4) + 14cJ] (2 - X)s/a(2+X)5/2 

where cl is the arbitrary nonsero coupling appearing in the potentiaI[l5]: 

V(X) +x+2xa - -itjcJJ - $4 

(6.9) 

(6.10) 

(6.11) 

(6.12) 

(note we have fked the redundant coupling c2 of [15]: cl=4cl). Observe that if we 

assume a real support then the eigenvalue density (6.11) changes sign somewhere 

along C , which would be inconsistent. 

For the remainder of this section we wilI focus on the k=3 bigeneric model 

(6.12), showing how a consistent, stable solution can be defined through complex 

analytic continuation. With the critical couplings fixed, the only keedom we have 

to modify the eigenvalue support C is by adjusting the redundant couplings cl and 

ea. It is easy to see that the unfortunate property of (6.11) persists for any real 

nonzero value of ~1. Thus to obtain a consistent one-cut solution at criticality we 

must take cl complex. To simplify the algebra, we will take cl pure imaginary: 

cl=24i/7. The function (6.1) then becomes 

F(A) = &V(A) + ; [(A’ - 4) + ix] (Xl -4)5/Z 

where y is the overall coupling introduced in [15]( essentially, the cosmological con- 

stant) and equals one at criticality. 
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Straightforward integration allows us to compute the primitive G(X) defined 

by (6.2). We 8x the integration constant by requiring G(-2)=0 (this is equivalent 

to taking X=-2 as the lower endpoint of the integral). The result is 

G(X) = - zt’ - &(3X2 - 26)ts - &At3 + ;At 

+ 2ni (6.14) 

where 

t=dz-i (6.15) 

While it is not at all obvious from (6.14), the singularities of G(X) are two 7/2 

branch points at X=&2, and a log branch point at infinity. In fig. 1, we have 

plotted the contours of Re(G)=O in the complex X-plane. Note that the contour C 

which connects the two branch points is now a curve below the real axis. Im(G) 

does not change sign along C , in fact it increases monotonically from 0 to 2xi, as 

implied by (6.3). 

To examine the question of stability of the one-cut solution, we compute G(X) in 

the double scaling limit. Because both endpoints of C contribute, we must compute 

G(A) separately for each endpoint. The scaling at the upper endpoint is given by: 

A = 2 - p/St; -f = 1 - 622 (6.16) 

where 6 is the “lattice spacing” (note we employ the same notation z, 1: for the 

scaling variables as [6], but with opposite sign). After some algebraic computing, 

we obtain: 

G(t) = - ;6’/’ [8za - 12~2 + 15yz] (z + y)3/a (6.17) 

where 

y= (y‘= (y (6.18) 

The expression for G(z) scaled to the lower endpoint is obtained from (6.17) by 

letting y-+--y and changing the overall sign. 

Since we have now scaled away from precise criticality, the 7/2 branch point of 

G at X=2 now splits up into a 3/2 branch point and two first-order zeros (the other 

branch point is shifted off to z=+oo). This explains the generic appearance of the 

Re[G(z)]=O contours plotted in fig 2. For much of the range of arg(z), the support C 

does not terminate at the 312 branch point, or is “pinched” by intersecting a zero of 
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G’(z). In these cases the one-cut solution is simply inconsistent. For values of arg(z) 

that pass this test, we then impose the stability criterion that it must be possible to 

draw a smooth curve which includes C and goes off to infinity without traversing any 

region with Re(G)<O [6] . By infinity we mean precisely that ]X]-+co with arg(X) 

equal to an odd multiple of x/8, so that the original path integral converges. As is 

the case for the usual k=3 model[B], there are three distinct sectors of Re(G)>O IAS 

X+ca. This ambiguity provides three types of stable one-cut solutions. All three 

can be seen from fig 2. One solution corresponds to a contour which includes C 

and goes to infinity through the sector in the lower right half plane. It satisfies the 

stability and consistency criteria for ]arg(y)]<(5rr+d)/7, which includes figs 2(c-h). 

This corresponds to ]arg(S)]<(rr+34)/7. 

This matches up exactly with the solution (5.4) for p-(n) of the string equations 

presented in the previous section. A similar analysis for G scaled at the lower 

endpoint should then match up to our solution for p+(z). It is gratifying that this 

analysis makes even more explicit the connection between the two endpoints of C 

and the doubled string equations, as discussed in [19]. 

There is also a solution which corresponds to a contour which goes to infinity 

through the sector in the lower left half plane. This solution, however, has complex 

specific heat; it results from applying the transformation (4.13) in an infelicitous 

manner. Lastly, there is a solution corresponding to a contour which goes to infinity 

through the sector in the upper half plane. It satisfies the stability and consistency 

criteria for -(3x+4)/7 > erg(y) > -x+4/7, w c includes figs 2(8-e). This corre- hi h 

sponds to -x+34/7 < arg(S) < (5x-3+)/7. N ow recall that the triply truncated 

solution for W(Z) has a z-+--t symmetry. Thus we expect to find a second solution 

identical to (5.4) but with its pole-tiee region rotated by x in urg(t), which is 6x/7 

in arg(i). This produces limits on arg(5) identical to those which we have just 

given. We conclude that our eigenvalue analysis is in perfect agreement with our 

analysis of the triply truncated solutions to the string equations. 

7. Solutions of the String Equations in General 

In this section we extend our analysis to the solutions to the arbitrary, k-th, 

differential equation in the KdV heirarchy of Psinleve I, 

%‘(=)I = = 
16 

(7.1) 



where the KdV potenti&[30], &, are derived from the recurrence relation 

R(l) _ f#“’ _ ,@) 
1+1 - 4 - ;p(‘)R,, Ro = ; 

The equations are invariant under the symmetry transformation 

z-+wz, p + w2k--lp, w = ezp{2&/(2k + 1)) 

which suggests the change of variables 

2k 
z=(- 

2k + 1 
)&k+Wb ) lo(%) = r-‘lkp 

The equation becomes 

(7.2) 

(7.3) 

(7.4) 

&[w(z)] = 1 + (terms of O[l/z]) (7.5) 

which is asymptotic to the equation5 Rk[[ws] = 1. As before we choose the trivial 

(pole-free) solution ws=l, and introducing an artificial expansion parameter, X, 

develop solutions for W(Z) as a power series in X 

W(Z) = 1+ XWl(Z) + PW&) +. . . (7.3) 

where eachof the wj(Z)‘s satisfies a linearinhomogenous (2k-2)-th order differential 

equation of the form 

k-l 
Ri”[wj] E C Ak-,WF)(Z) = hj(Z) 

r=o 
(7.7) 

Notice that the linearized KdV operator, Rt”, contains only even powers of deriva- 

tives and that the coefficients, A,, are normalized such that 

Ak = (-l)k+12k-‘(2k - l)!!Al = k 
(k - I)! (7.3) 

These (2k-2)-th order differential equations (we suppress the index j in what 

follows) can be solved recursively by reduction to a system of k - 1 second order 

differential equations 

W”(3) = sow(z) +j1(z) (7.9) 

f~(~)=a,fm(~)+jm+l(~)r m=l,...,k--2 

s The general solution to Rk[Wc]=l is presumably an elliptic function, but we 
have not encountered a proof of this. 
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where jk-l(z) = h(z). To ace this, note that the ansats 

w”(2) = sow(t) + fl(Z) (7.10) 

implies that 
r--l 

up)(*) = a;;-lw”(%) + c a;-‘fy-“‘(z) (7.11) 
,=1 

Substituting back in the differential equation yields a (k-l)-th order polynomial 

constraint on aar and a (2k-4)-th order differential equation for jl(.z), namely: 

k-1 

‘&-I [Q] E c a‘ik-,a; = 0 
r=O 

k-l r-l 

(7.12~~) 

yz mGo -‘b-r~;-m-‘fi(2m)(~) = h(z) (7.126) 

Iterating the procedure above, we make the ansats 

f:(z) = 41(z) + h(z) 

Consistency requires the (k-2)-th order polynomial constraint 

k-l r--l 

Qk-a[al; a,,] S c c Ak--,a;---la;” = 0 

r=l rn=O 

and the (2k-6)-th order differential equation 

k-l r-1 m-1 

2 gl 2 Ak-,a~-m--loI”-‘-‘f~2’)(~) = h(z) (7.15) 

(7.13) 

(7.14) 

Succeeding stages yield the polynomial constraints 

k-l r-1 m--l 
ok-&; aor al] E c c c &-,a:-m-‘a~-‘-la: = 0 

r=l rn=l 1=0 
k-l r--l m--l 1-l 

(7.16) 

Qk-d[aa; G,, al, al] Z c c c c Ak--ra~-m-‘a,-‘-l.:-n-l.; = 0 . . . , 

l-=1 In=1 I=1 n=o 

The final step of the iteration gives an expression for Q-2 in terms of all the 

preceeding coefficients, and the second order differential equation 

f;‘-,(z) = ak-dk-2(z) + h(r) 
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The second order differential equations can all be solved by the methods de- 

scribed previously. By a suitable choice of integration constants a unique triply 

truncated solution can be developed. Each contribution to this solution can be 

expressed in terms of entire functions and powers of logarithms. The analysis of 

Boutxonx can be applied just as in our example of section 4. 

It remains to solve the set of (k-l) coupled polynomial equations for the coef- 

fidents*,al,... , as-s. We note, however, that the polynomial functions, Q,,, are 

related as follows 

&-l[q,] = (00 - aff))Qk-&zo; a?)] = (a,, - a(o”)(ao - c$‘)f&s[aa; I$), $)] . * * 

(7.18) 
wh $), . . . , *I;‘-” are the roots of the polynomial es-1 [as]. Therefore the only 

consistent solution for the coefficients, as, 1.. , ak-2, ‘ire the k-l roots of &-I! 

Rrrthermore, (7.18) is clearly symmetric under permutations of the roots among 

themsclves, which ensures that the triply truncated solution slso has this symmetry. 

It is important to note that when k is even the polynomial Qk-1 has at Zeoat 

one real root, (positive when AI and As are taken to have opposite signs). This 

guarantees that the triply truncated solution is complex. To see why, let are,,r denote 

the real root. Then in the development we will have log{-=%) terms, which 

for real positive z have imaginary part fr; these imaginary parts occur order by 

order in the development and clearly do not cancel out. By contrast, roots which 

are complex conjugate pairs only give contributions which are themselves complex 

conjugate pairs, for real z; this follows from the symmetry of the solution under 

interchange of the roots. Thus, leaving aside the slightly more complicated case 

of bigeneric models, we have arrived at the following simple criterion: a real triply 

truncated mlution ia obtained if and only if the polynomial Qkml[ao] had no real 

roots”. Since for odd k sll coefficients in the linearized KdV operator enter with 

the same sign[l3], it follows that Qk-r[as] has no real roots. Thus all of the odd k 

models have real triply truncated solutions. 

As an example, we apply this analysis to the k = 4 equation in the KdV heirar- 

thy 

Ep + 5pp(4) + ;pp + $p”)’ + 2$p” + 2pp’l + p4 = I 1 (6) 2 (7.19) 

Letting 

p = z%+) , z = (9z/8)“/” (7.20) 

* Many statements in this section are reminiscent of the asymptotic analysis of 
Ginsparg and Zinn-Justin[l3]. 

19 



and developing the solution w(z) = I+ Awl + Xftc2 + * * ., gives the system of lin- 

earized sixth order equations 

lwp + # + 2Wjz) + 4wj = hi(=) 
35 

We make the ansats (suppressing the index j) 

W”(Z) = a,w(z) + fi(Z) 

f:(z)= alflk)+fi(z) 

f:‘(z) = aafdz) + h(z) 

Consistency requires that the coefficients satisfy the conditions 

(7.21) 

(7.22) 

u; + 14a; + 70as + 140 = 0 

a: + (as + 14)al + (ai + 14as + 70) = 0 (7.23) 

oa+al+aij+14=0 

There are two (complex conjugate) roots, and one real root. The presence of the 

real root guarantees that the triply truncated solution is complex. 

8. Conclusion 

It would naturally be of interest to extend this analysis to the string equations 

obtained from multiple arc phases of one-matrix models, unitary matrices, etc. 

Of particular interest are the hermitian matrix chain models, certain of which are 

known to describe the unitary minimal models dressed by gravity [4]. An asymptotic 

analysis of these equations indicates that all of the unitary solutions arc non-Borel- 

summable [13]. This would lead us to suspect that the specific heat for these models 

is always complez; it would be nice to demonstrate this explicitly. 

It would also be interesting to identify continuum models in the same uni- 

versality class as the scaling limits of our bigeneric models. In addition we note 

that this paper has ignored the more general (p, q) bigeneric models of [15], which 

exhibit p/q-th order criticality for the specific heat. The double-scaling limit in 

these cases involves both a fine tuning of certain couplings relative to each other, 

in addition to the overall gross tuning of the potential due to the renormalization 

of the cosmological constant. 

The most important issue is whether it is possible to obtain consistent real 

solutions of the pure gravity model (and other models) by analytic methods. It is 
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not hard to imagine that some clever prescriptions applied to our previous discussion 

might be sufficient to do this. One would hope, then, to make contact with the 

results obtained by dimensional reduction. Further, these “technical difficulties” 

may provide significant insight into the nonperturbative physics of string theories. 
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Figure Captions 

Fig. 1: Contours of Re[G(X)], plotted in the complex X-plane, for the k=3 bi- 

generic model with cl=24i/7. The dotted contour is the eigenvalue sup- 

port C . 

Fig. 2: Contours of Re[G(z)], plotted in the complex z-plane, for the same model 

scaled to the upper endpoint. The dotted contour in each figure is the 

eigenvalue support C . The figures correspond to various (decreasing) 

values of arg(y), which is related to arg(z) via (6.18). 
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